\qquad

Reg. No. \qquad

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2020

(CBCSS)

Computer Science
CSS 1C 03-THEORY OF COMPUTATION
(2019 Admissions)
Time : Three Hours
Maximum : 30 Weightage

General Instructions

1. In cases where choices are provided, students can attend all questions in each section.
2. The minimum number of questions to be attended from the Section/Part shall renatain the same.
3. There will be an overall ceiling for each Section / Part that is equivalent the thaximumpreightage of the Section / Part.

Section A

1. Define Alphabets, Strings and Languages.
2. Draw a DFA which accepts strings of the form abe $\mathrm{a}(\mathrm{bc}$ *a.
3. Define regular expression. Write regular expression for all strings over $\{0,1\}$ ending in ' 11 ' and contain at least one ' 0 '.
4. Explain the Classes P and XP
5. Define Push Dow/ Automata.
6. Define context senstive L. nguages.
7. Explain Multi-tape Turing machine

Section B

Answer any four questions.

Each question carries 3 weightage.
8. Design NFA and DFA which recognizes the language over $\mid a-2$) and accepts the strings ending in 's' or 'ed' or 'ing'.
9. Prove that every language defined by a regular expression is also defined by a Finite Automation.
10. Explain the following closure properties of regular langungen:

Closure under complementation, Union and Intorsection
11. Explain "Satisfiability Problem".
12. Write a note on Halting problem.
13. List and explain closure properties of Context Free Languages
14. Comment on the Equivalence of T'ype () grammar with 'luripe Dochme

Section (
Answer uny two fucemmons
Each question carries bemenderse.
15. Illustrate NFA to DFA conversion using the following axample:

16. Illustrate DFA state minimization with suitable example.
17. Define CNF and GNF. Give examples. Perform the following, in the order given, on the following grammar :

Eliminate and productions, eliminate any unit productions, Eliminate useless symbols and put the resulting Grammar into Chomsky Normal Form :

$$
\mathrm{S} \rightarrow 0 \mathrm{~A} 0|1 \mathrm{~B} 1| \mathrm{BB}
$$

$$
\mathrm{A} \rightarrow \mathrm{C}
$$

$$
\mathrm{B} \rightarrow \mathrm{~S} \mid \mathrm{A}
$$

$$
\mathrm{C} \rightarrow \mathrm{~S} \mid \varepsilon
$$

18. Define Turing Machine and Language of a Turing machine. Explain Instantaneous Descriptions and transition diagrams for Turing Machines with suitable examples.

