185513

D 13245

(Pages: 2)

Name.....

Reg. No.....

FIRST SEMESTER M.C.A. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, NOVEMBER 2021

M.C.A.

MCA 20 103-DISCRETE MATHEMATICAL STRUCTURES

(2020 Syllabus Year)

Time : Three Hours

Maximum : 100 Marks

Answer any five full questions. Each question carries 20 marks.

1. (A) Use principle of inclusion or exclusion to solve the following :

In a conference held in Mumbai, 500 delegates attended it. 200 of them would take tea, 350 would take coffee and 10 did not take either tea or coffee.

- i) How many can take both tea and coffee ?
- ii) How many can take tea only?
- iii) How many can take coffee only ?

(10 marks)

(B) Let f and g be the functions from the set of integers to the set of integers defined by f(x) = 2x + 3 and g(x) = 3x + 2. What is the composition of f and g? What is the composition of g and f?

(10 marks)

- 2. (A) What is a simple proposition and compound proposition? Explain with example. (10 marks)
 - (B) Show that the compound statements $(\sim P \land (\sim Q \land R) \lor (Q \land R) \lor (P \land R))$ and R are equivalent.

(5 marks)

(C) Construct the truth table for $(p \rightarrow q) \land (q \rightarrow p)$.

(5 marks)

Turn over

185513

For More Question Paper Visit dashscholar.com

	2		D 13245
3 (A) Show that in a lattice if $a < b$	$b < c$ then $a \oplus b = b^* c$	and $(a * b) \oplus (b * c) =$	$b = (a \oplus b)^* (a \oplus c).$
			(10 marks)
(D) Determine whether the page	ta (11 2 3 4 5) [) an	d ({1, 2, 4, 8, 16},) an	e lattices.
(B) Determine whether the pose			(5 marks)
		• • • • • • • • • • • • • • • • • • •	(5 marks)
(C) Explain the properties of lat	ices.		(10 marks)
4. (A) Determine whether $(z,+,.)$ is	a ring with binary ope	eration.	
(B) Define : i) Isomorphism ; ii)	Homomorphism ; and i	ii) Automorphism.	(10 marks)
5 Explain the following with exam	ples :		
5. Explain the following with chain	Granh ((()) Isomorphi	sm of graphs ; and (D)	Hamiltonian Graph.
(A) Regular Graph; (B) Bipartite	Graph; (C) Isomorphi		$(4 \times 5 = 20 \text{ marks})$
6 (A) Show that $\sim (P \rightleftharpoons Q)$ and (~ P \rightleftharpoons Q) are logically	equivalent.	(10 marks)
			(10 marks)
(B) $A = \{2, 3, 4\}, B = \{1, 2\}$ find	A + B, B + C, A + B +	0.	
7 (A) Obtain PCNF and PDNF of	$f(P \rightarrow (Q \land R)) \land (\sim P)$	\rightarrow (~ $\mathbb{Q} \land - \mathbb{R}$)).	
1. (11) Obtain 1 of the second			(10 marks)
		0]	
	0 1	0	
(B) Draw a graph with the a o		1	
			(5 marks)
	acots (11 2 3 4 5). []) a	nd ({1,2, 4, 8, 16},) a	re lattices.
(C) Determine whether the point (C)	19619 ((Tital of alo;) 1		(5 marks)

For More Question Paper Visit dashscholar.com